Flow of colloidal solids and fluids through constrictions: dynamical density functional theory versus simulation.

نویسندگان

  • Urs Zimmermann
  • Frank Smallenburg
  • Hartmut Löwen
چکیده

Using both dynamical density functional theory and particle-resolved Brownian dynamics simulations, we explore the flow of two-dimensional colloidal solids and fluids driven through a linear channel with a constriction. The flow is generated by a constant external force acting on all colloids. The initial configuration is equilibrated in the absence of flow and then the external force is switched on instantaneously. Upon starting the flow, we observe four different scenarios: a complete blockade, a monotonic decay to a constant particle flux (typical for a fluid), a damped oscillatory behaviour in the particle flux, and a long-lived stop-and-go behaviour in the flow (typical for a solid). The dynamical density functional theory describes all four situations but predicts infinitely long undamped oscillations in the flow which are always damped in the simulations. We attribute the mechanisms of the underlying stop-and-go flow to symmetry conditions on the flowing solid. Our predictions are verifiable in real-space experiments on magnetic colloidal monolayers which are driven through structured microchannels and can be exploited to steer the flow throughput in microfluidics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE DENSITY PROFILES OF A LENNARD -JONES FLUID CONFINED TO A SLIT

The structure of fluids confined by planar walls is studied using density functional theory. The density functional used is a generalized form of the hypernetted chain (HNC) functional which contains a term third order in the density. This term is chosen to ensure that the modified density functional gives the correct bulk pressure. The proposed density functional applied to a Lennard-Jones...

متن کامل

General dynamical density functional theory for classical fluids.

We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects which strongly influence the nonequilibrium properties of the system. We derive a general dynamical density functional theory which shows very good agreement with full Langevin dynamics. In suitable limits, we recover existing dynamical density functional theories and a Navier-Stokes-like equ...

متن کامل

Static and dynamical correlation functions behaviour in attractive colloidal systems from theory and simulation

We present comparisons of theoretical and simulation results for static and dynamical correlation functions for a very simple model of attractive colloidal systems, the short-ranged square-well potential. In the region of the phase diagram investigated, the system displays slow (glassy) dynamics. In particular, we compare the static structure factor calculated by Percus–Yevick closure versus th...

متن کامل

Dynamical density functional theory for molecular and colloidal fluids: a microscopic approach to fluid mechanics.

In recent years, a number of dynamical density functional theories (DDFTs) have been developed for describing the dynamics of the one-body density of both colloidal and atomic fluids. In the colloidal case, the particles are assumed to have stochastic equations of motion and theories exist for both the case when the particle motion is overdamped and also in the regime where inertial effects are...

متن کامل

Dynamical density functional theory: binary phase-separating colloidal fluid in a cavity

Abstract. The dynamical density functional theory of Marconi and Tarazona [J. Chem. Phys., 110, 8032 (1999)], a theory for the non-equilibrium dynamics of the onebody density profile of a colloidal fluid, is applied to a binary fluid mixture of repulsive Gaussian particles confined in a spherical cavity of variable size. For this model fluid there exists an extremely simple Helmholtz free energ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 28 24  شماره 

صفحات  -

تاریخ انتشار 2016